

Defining the
 Meaning of Quality in ATE

Agilent Technologies 3499 Switch/Control System

Data Sheet

High speed, high density, highly usable. The Agilent 3499 gets high marks in ATE environments worldwide.

Performance Overview

There are three modular mainframes in the 3499 family:

- 3499B - two-slots, up to 80 channels
- 3499A - five-slots, up to 200 channels
- 3499C - 9/14 slots, up to 360 channels

The 3499C can accommodate up to nine plug-in modules that can occupy up to fourteen physical slots, thus providing a cost efficient configuration for modules that are one, two or three slots wide. All mainframe configurations of the Agilent can scan at rates up to 350 channels per second, or open/close 200 channels in less than 0.1 second.

You can choose from 30 different plug-in modules to switch:

- electronic signals from DC to 20 GHz ,
- voltages to $1,000 \mathrm{~V}$, or currents to 8 A
- optical signals from 1270 to 1670 nm

All units have an efficient user interface that works equally well on the manufacturing floor and in desktop applications. High-performance switching modules, multifunction modules, built-in relay cycle counters and straightforward connections all contribute to the performance and day-to-day usability of the 3499 . Here's what it means in the real world...

Improved Throughput

While traditional switching mainframes open/close relays in sequence, the Agilent 3499A/B/C systems use innovative parallel driving circuits to open/close switches simultaneously, significantly increasing test throughput. The systems also provide high-density modules with up to 40 channels per module. Three multi-function modules integrate switching, digital I/O and DAC in one module to enhance system performance.

Cost-Sensitive Test

Fast Set-Up

An easy-to-use interface and industry-standard connections mean fast set-up and integration with the 3499. Usability features include:

- Standard RS-232 and GPIB interfaces
- SCPI (Standard Commands for Programmable Instruments)
- Simplified configuration procedures
- Self-guiding front panel interface
- Easy-to-use module connection accessories
Simplify control of switch modules with Agilent TestExec SL 5.0 software (available separately). Operate switches using userdefined signal names rather than writing SCPI commands. TestExec SL includes example setups for the most popular 3499 modules.

With three mainframes and 30 modules to choose from, you can make sure the 3499 meets your exact needs. Build the system you need today, add more modules later as your needs change. That means you buy only the test capability you need. Newly designed high-density switch modules further reduce the cost-of-test by combining a large number of channels on a single module. And with up to 40 switching channels per module, the 3499 reduces per-channel cost while saving rack and floor space. You get a simpler system with fewer modules, reducing the cost of buying, owning and maintaining your system.

Go Configure

Broad configuration flexibility using up to 30 plug-in modules accounts for the wide adoption of the Agilent 3499 worldwide. The following tables make the point. The 3499 is built for the unpredictable, evershifting needs of ATE.

Agilent 3499A/B/C Mainframe Specifications	
Items	Specifications
General	
Display	Vacuum fluorescent
Rear Panel Connectors	GPIB; RS-232; 8-pin mini DIN Connector (5 pins for Digital I/0, 3 pins for external trigger)
Power Supply	3499A/B: 100 to 240 VAC universal input (47 Hz to 63 Hz); 100-127 VAC (400Hz); 40 VA maximum. 3499C: 100 to 240 VAC universal input; 47 Hz to $63 \mathrm{~Hz} ; 65 \mathrm{VA}$ maximum.
Operating Environment	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}, ~<80 \% \mathrm{RH}\left(0^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$
Storage Environment	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Net Weight	3499A: 3.8 kg (8.4 lbs); 3499B: $2.5 \mathrm{~kg}(5.5 \mathrm{lbs})$; 3499C: $7.4 \mathrm{~kg}(16.4 \mathrm{lbs})$.
Dimensions	3499A: H $89 \mathrm{~mm} \times$ W 426mm x L 348mm 3499B: H 89mm \times W $213 \mathrm{~mm} \times$ L 348 mm Note: Modules with terminal blocks extend 3499C: H $222 \mathrm{~mm} \times$ W 426mm \times L 354mm an additional 8.5 cm beyond the rear of the mainframe.
Safety	Conforms to CSA, UL-1244, IEC 1010 Cat I
RFI and ESD	CISPR 11, IEC 80 1/2/3/4
Warranty	1 year
System	
Slot Capacity	3499A: 5 slots 3499B: 2 slots. 3499C: 9 logical slots/ 14 physical slots
Memory	3499A/B mainframe with controller board 1.0 (Firmware REV1.0/2.0/3.0): Capable of storing 10 instrument setups and 10 errors in SCPI mode or 40 instrument setups and 1 error in 3488A mode. For 3499A/B/C mainframe with Controller board 2.0 (Firmware REV 4.0 or later): Capable of storing 50 instrument setups and 10 errors in SCPI mode or 40 instrument setups and 1 error in 3488A mode.
Relay Setting Time	Automatically selected by the mainframe for each module.
Trigger Source	External trigger (real panel Mini-DIN connector); GPIB bus (GET,*TRG) or RS-232 (*TRG).
External Trigger	Trigger pulse width: >2 $\mu \mathrm{s}$; External trigger delay: $<2 \mathrm{~ms}$
Built-in 4 digital I/0 Input	TL compatible; $\mathrm{V}_{0}(\mathrm{~L}):<0.8 \mathrm{~V}$ @ $\mathrm{I}_{0}=-100 \mathrm{~mA} ; \mathrm{V}_{0}(\mathrm{H}):>2.4 \mathrm{~V}$ @ $\mathrm{O}_{0}=1 \mathrm{~mA} ; \mathrm{Vout}(\mathrm{H})<=42 \mathrm{~V}$.
Scan Speed	350 chans/sec (equipped with N2266A)
Digital I/0 Block Transfer Rate	20K bytes/sec (long word)

There are 30 plug-in modules including multiplexer, RF multiplexer, fiber-optical multiplexer, general-purpose relay, matrix, digital input/output, Form-C, breadboard, multifunction modules. Please refer following table for plug-in module selection.
Plug-in Module Specifications

Module	Description	Max. Voltage	Max. Current per Chan.	Initial Closed Channel Resistance	Thermal Offset per Chan.	Bandwidth	Connection Type	Relay Cycle Counter	Page

Multiplexer Modules									
N2260A	40-channel	200 V	1A	$<1 \Omega$	<3 V	10MHz	Tor C	Yes	6
N2266A	40-channel	200 V	0.5A	$<1 \Omega$	$<50 \mu \mathrm{~V}$	40 MHz	Tor C	Yes	6
N2270A	10-channel	1000 V	1 A	$<1 \Omega$	$<200 \mu \mathrm{~V}$	5 MHz	Crimp \& Insert	Yes	15
44470A	10-channel	250 V	2A	$<1 \Omega$	$<3 \mu \mathrm{~V}$	10 MHz	T		21
44470D	20-channel	250 V	2 A	$<1 \Omega$	<3 3 V	10MHz	T		21

General-purpose Relay Modules

N2261A	40 -channel	200 V	1 A	$<0.5 \Omega$	$<3 \mu \mathrm{~V}$	10 MHz	Tor C	Yes	7
N2267A	8 -channel	250 V	8 A	$<0.08 \Omega$	$<3 \mu \mathrm{~V}$	20 MHz	Crimp \& Insert	Yes	12
44471A	10 -channel	250 V	2 A	$<1 \Omega$	$<3 \mu \mathrm{~V}$	10 MHz	T		21
44471 D	20 -channel	250 V	1 A	$<1 \Omega$	$<3 \mu \mathrm{~V}$	10 MHz	T		21
44477A	7 -channel	250 V	2 A	$<1 \Omega$	$<3 \mu \mathrm{~V}$	10 MHz	T		21

Matrix Modules

Matrix Modules									
N2262A	4×8 matrix	200 V	1 A	$<1 \Omega$	$<3 \mu \mathrm{~V}$	10 MHz	Tor C	Yes	8
44473 A	4×4 matrix	250 V	2 A	$<1 \Omega$	$<3 \mu \mathrm{~V}$	10 MHz	T		21

Digital I/O Modules

N2263A	32 -bit TL	42 V	0.6 A	NA	NA	NA	Tor C		9
44474 A	16 -bit $T \mathrm{~L}$	30 V	0.125 A	NA	NA	NA	T		21

Multifunction Modules									
N2264A	12 GP	200 V	1A	$<0.5 \Omega$	$<3 \mu \mathrm{~V}$	10MHz	Tor C	Yes	10
	3 GP	125 V	5A	$<0.1 \Omega$	$<3 \mu \mathrm{~V}$	10 MHz	Tor C	Yes	10
	16-bit DIO	42 V	0.6A	NA	NA	NA	Tor C		10
N2265A	4×4 matrix	200 V	1A	$<1 \Omega$	$<3 \mu \mathrm{~V}$	10 MHz	Tor C	Yes	11
	16-bit DIO	42 V	0.6A	NA	NA	NA	Tor C		11
N2269A	2 DAC	12 V	10 mA	NA	NA	NA	Tor C		14
	16-bit DIO	TL-compatible	NA	NA	NA	NA	Tor C		14

Note: $\mathrm{GP}=\mathrm{General}$-purpose, $\mathrm{DIO}=$ Digital $/ / \mathrm{O}, \mathrm{T}=$ Terminal Block, $\mathrm{C}=$ Cable.
Fiber-optical Multiplexer Modules (typical specs)

Modules	Description	Insertion loss	Stability	Repeatability	Wavelength							Connector Switching Time							15 ms		18
N2280A	Quad 1×2	0.5 dB	$\pm 0.03 \mathrm{~dB}$	$\pm 0.005 \mathrm{~dB}$	$1310 / 1550 \mathrm{~nm}$	SC/APC	18														
N2281A	Dual 1×4	0.5 dB	$\pm 0.03 \mathrm{~dB}$	$\pm 0.0065 \mathrm{~dB}$	$1310 / 1550 \mathrm{~nm}$	SC/APC	20 ms		18												
N2282A	Single 1×8	0.5 dB	$\pm 0.02 \mathrm{~dB}$	$\pm 0.005 / 0.01 \mathrm{~dB}$	$1270 / 1670 \mathrm{~nm}$	SC/APC	250 ms		18												

RF \& Microwave Modules

Module Connection Accessories

N2290A	Screw terminal block for N2260A, N2266A	N2295A	Screw terminal block for N2265A		
N2291A	Screw terminal block for N2261A	N2329A	Screw terminal block for N2269A		
N2292A	Screw terminal block for N2262A	N2327A	Crimp \& Insert Connection kit for N2267A		
N2293A	Screw terminal block for N2263A	N2320A	Crimp \& Insert Connection kit for N2270A		
N2294A	Screw terminal block for N2264A				
N2296A	Crimp \& insert terminal block for N2260/1/2/3/4/5/6A.				
N2297A	1.5 m cable for connecting DUT to N2260/1/3/4/5/6A, one DIN96-to-Twin-D50.				
N2298A	1.5 m cable for connecting to DUT to N2262A, one DIN96-to-D25.				
N2299A	1.5 m cable for connecting to N2260/1/3/4/5/6A, one DIN96-to-Quad D25.				

2-wire, 40-channel Multiplexer Modules

Agilent N2260A, N2266A

- High speed switching
- Reconfigurable to 1, 2, and 4-wire mode
- Built-in relay cycle counters

The N2260A and N2266A are highdensity reconfigurable multiplexer (MUX) modules for high-throughput production test. They can be operated in either SCPI or 3488A mode. In SCPI mode, they can be configured in any of the following ways:

- one 80-channel, 1-wire MUX
- one 40-channel, 2-wire MUX
- dual independent 20 -channel

2-wire MUXs

- one 20-channel 4-wire MUX.

N2260A/66A MUX Module Terminal Block

Specifications

General Specifications		AC Isolation/Performance	
Relays:		Capacitance (with 1 channel closed): Open Channel, Channel-Channel	
N2266A	Reed non-latching relay		
N2260A	Armature latching relay	N2266A	<7pF
Thermal Offset:		N2260A	<7pF
N2266A	$<50 \mu \mathrm{~V}$	HI-LO	
N2260A	$<3 \mu \mathrm{~V}$	N2266A	<50pF
Relay Life:		N2260A	<75pF
N2266A	10^{9} @ 1V, 1mA	Channel-Chassis	
N2260A		N2266A	<140pF
Mechanical:	10^{8}	N2260A	<150pF
Electrical:	5×10^{5} @ 1A	Insertion Loss (with 50 Ohm termination):	
Maximum Scan Rate:		N2266A	
N2266A	350 Chan./sec	100 kHz	$\leq 0.20 \mathrm{~dB}$
N2260A	80 Chan./sec	1 MHz	$<0.30 \mathrm{~dB}$
Input Characteristics		10 MHz	$\leq 2.0 \mathrm{~dB}$
		40 MHz	$<3.0 \mathrm{~dB}$
Maximum Current:		N2260A	
N2260A	1A	1 MHz	$<0.25 \mathrm{~dB}$
Maximum Voltage:	200 V	Crosstalk (with 50 Ohm termination):	
	(AC peak for N2266A)		
Maximum Power: N2266A		100kHz	$<-75 \mathrm{~dB}$
	10W DC or AC peak	1 MHz	$<-55 \mathrm{~dB}$
N2260A	60 W or 62.5VA	10MHz	$<-33 \mathrm{~dB}$
Initial Closed Channel Resistance:$<1 \Omega$		N2260A	
		100 kHz	$<-70 \mathrm{~dB}$
DC Isolation		1 MHz	$<-50 \mathrm{~dB}$
Open Channel, Channel-Channel: $<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right) \quad>10^{10} \Omega$		Module Accessories	
HI-LO: $<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right)$	$>10^{10} \Omega$	N2290A	Screw terminal block for N2260A, N2266A
Channel-Chassis: $<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right)$	$>10^{10} \Omega$	N2296A	Crimp \& insert terminal block
Note: All voltage and current are in DC or AC RMS if not specified.		N2297A	DIN96-to-Twin-D50 cable
		N2299A	DIN96-to-Quad-D25 cable

40-channel General-purpose Relay Module

Agilent N2261A

- 40 independent relays in one module

- High-speed switching in parallel operation

- Built-in relay cycle counters

The N2261A general-purpose relay module provides 40 independent single-pole-single-throw (SPST) latching relays. Each channel can switch up to $200 \mathrm{~V}, 1 \mathrm{~A}$, and 60 W or 62.5 VA. The innovative parallel driving circuits allow 10 channels to be operated simultaneously for high throughput. It can be operated in either SCPI mode or 3488A mode.

Specifications

General Specifications	
Relays:	Armature latching relay
Thermal Offset:	$\leq 3 \mu \mathrm{~V}$
Relay Life	
Mechanical:	10^{8}
Electrical:	5×10^{5} (at 1A load)
Maximum Scan Rate:	
	80 Chan/sec
Input Characteristics	
Maximum Voltage:	200 V
Maximum Current:	
Per channel	1A
Per module	20A
Maximum Power: Per channel	60 W or 62.5VA
Per module	1200W or 1250 VA
Initial Closed Channe	Resistance: $<0.5 \Omega$
DC Isolation	
Open Channel, Chan $<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right)$	nel-Channel: $>10^{10} \Omega$
Channel-Chassis: $<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right)$	$>10^{10} \Omega$

A pair of signals can be switched together by using a pair of channels on two N2261A modules. The N2261A can be operated in single-channel break-before-make (BBM) or multiplechannel open/close mode. Screw terminal block, crimp \& insert terminal block and DIN96-to-D25/50 cables are available to simplify wiring.

Module Accessories

N2291A N2296A block	$\frac{\text { Screw terminal block }}{\text { Crimp \& insert terminal }}$
N2297A	DIN-to-Twin-D50 cable N2299A

Note: All voltage and current are in DC or AC RMS if not specified.

4×8 Matrix Module

Agilent N2262A

- Multiple inputs connecting to multiple outputs

- High-speed switching in parallel operation

- Built-in relay cycle counters

The N2262A 4x8 matrix module contains 32 cross points organized in a 4 -row by 8 -column configuration. It provides a convenient way to connect a group of test instruments to multiple test points on DUTs. Each cross point in the module switches two wires for the high and low measurement. Multiple matrix modules can be connected for applications that require large matrices. For example, four N2262As can be combined as a 16×8

Specifications

General Specifications		AC Isolation	
Relays:	Armature latching relay	Capacitance (with 1 channel closed): Open Channel, Channel-Channel $<7 \mathrm{pF}$	
Thermal Offset:	$\leq 3 \mu \mathrm{~V}$		
Relay Life		HI-LO	$\leq 30 \mathrm{pF}$
Mechanical:	10^{8}	Channel-Chassis	$<50 \mathrm{pF}$
Electrical:	5×10^{5} (at 1A load)		
Input Characteristics		100kHz	
		1 MHz	$\leq 0.20 \mathrm{~dB}$
		10MHz	$\leq 0.60 \mathrm{~dB}$
Per channel	1A	Crosstalk (with 50Ω termination):	
Per module	4A	100 kHz	$<-73 \mathrm{~dB}$
Maximum Power:		1 MHz	$<-53 \mathrm{~dB}$
Per channel	60 W or 62.5VA	10MHz:	$<-28 \mathrm{~dB}$
Per module	240 W or 250 VA	Module Accessories	
Initial Closed		N2292A N2296A block	Screw terminal block
Channel Resistance:	<1 Ω		Crimp \& insert terminal
DC Isolation			
Open Channel, Chann	el-Channel:	N2298A	DIN96-to-D25

32-Bit Digital Input/Output Module

Agilent N2263A

- TTL compatible, sinking up to 0.6 A
- Input /output configurable byte-by-byte
- Three I/O control modes: static, strobe, and handshake

The N2263A provides 32-bit bidirectional lines and three handshake and control lines. The 32-bit I/O lines are TTL compatible input/output, or TTL compatible input and open collector output up to 42 V . The 32-bit I/O lines can be addressed individually (byte-by-byte), either as a 32-bit port, four independent 8-bit ports, or as two independent 16-bit ports. A Zener diode is used in each channel for input voltage over-protection (> 42 V DC), including ESD protection. Each I/O line can sink up to 0.6 A to control external devices, including:

- High-voltage/high current relays
- Microwave relays and attenuators (8710xx , 876xx and 849xx)
- Solenoid coils

The polarities of the I/O and handshake lines can be operated in positive or negative logic mode. With the three control lines (PCTL, I/0, and PFLG), you can define five handshake modes for communication with peripherals. Screw terminal block, crimp \& insert terminal block, and DIN96-to-D25/50 cables are available for simple wiring.

Specifications

1/0 Lines	Handshake Lines	
Maximum Voltage(line-chassis): $+42 \mathrm{~V} D \mathrm{C}$	Maximum Voltage(line-chassis):$+5 \mathrm{~V} D \mathrm{C}$	
Maximum Sink Current(per bit):	Output Characteristics:	
0.6A	$V_{\text {out }}$ (high)	$\geq 2.4 \mathrm{~V}$ @
Output Characteristics:		$1 \leq 400 \mu \mathrm{~A}$ output
$\mathrm{V}_{\text {out }}$ (high) $\quad \geq 2.4 \mathrm{~V}$ @	$\mathrm{V}_{\text {out }}$ (low)	$\begin{aligned} & \leq 0.5 \mathrm{~V} @ \\ & \mathrm{I} \leq 1 \mathrm{~mA} \text { input } \end{aligned}$
$1 \leq 10 \mathrm{~mA}$ output	$\mathrm{I}_{\text {out }}$ (low)	$<25 \mathrm{~mA}$ (when shorted to +5 V)
$\mathrm{V}_{\text {out }}$ (low) $\quad \leq 0.8 \mathrm{~V}$ @		
$1 \leq 600 \mathrm{~mA}$ input	Input Characteristics:	
Input Characteristics:	$V_{\text {in }}$ (high)	$\geq 2.0 \mathrm{~V}$
$\mathrm{V}_{\text {in }}$ (high) $\quad \geq 2.0 \mathrm{~V}$	$V_{\text {in }}$ (low)	$\leq 0.8 \mathrm{~V}$
$\mathrm{V}_{\text {in }}$ (low) $\quad \leq 0.8 \mathrm{~V}$	Module Accessories	
	N2293A	Screw terminal block
	N2296A	Crimp \& insert terminal block
	N2297A	DIN96-to- Twin-D50 cable
	N2299A	DIN96-to-Quad-D25 cable

MODULES
Multifunction Module

Agilent N2264A

- 12 + $\mathbf{3}$ GP + 16-bit digital I/0 in one module
- High-speed switching in parallel operation
- Built-in relay cycle counters

The Agilent N2264A multifunction module combines 12 general-purpose relays, three high-current relays, and 16-bit digital input/output in one module, saving cost and space. Its three high-current channels are especially useful in automated test systems for cellular phone test or battery test, where only two or three low-resistance channels are needed. Four connection accessories simplify wiring.

The 12 general-purpose channels are non-latching relays that can switch up to $200 \mathrm{~V}, 1 \mathrm{~A}, 60 \mathrm{~W}$ or 62.5 VA . The three high-current channels are non-

Specifications

12-channel General-purpose Relay

Input Characteristics	
Maximum Voltage:	200 V
Maximum Current: Per channel	1A
Maximum Power: Per channel	60W; 62.5VA
Initial Closed Channel Resistance	$<0.5 \Omega$
DC Isolation	
Open Channel, Chan $<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right)$	el-Channel: $>10^{10} \Omega$

For 16-bit Digital I/0 specifications, please refer to the Agilent N2263A.
latching relays switching up to 5 A , 125 V DC, or 200 V AC RMS. The 16 -bit digital I/O provides 16 bi-directional data lines (bits) plus three lines used for control and handshaking. The 16 -bit I/O lines are TTL compatible input/output, or TTL compatible input and open collector output. The 16 I/O bits can be addressed individually, as two independent 8-bit ports, or as one 16 -bit port. A Zener diode is used in each channel for input overvoltage protection (>42 V DC), including ESD protection. Each I/O line can sink up to 0.6 A to control external devices.

3-channel High-current Relay

General Specifications	
Relays:	Armature non-latching relay
Relay Life	
Mechanical:	5×10^{7}
Electrical:	10^{5} (at 5A load)
Thermal Offset:	$\leq 3 \mu \mathrm{~V}$
Time to close one channel:	
	16 ms
Input Characteristics	
Maximum Voltage:	125 V DC or 200 V AC
Maximum Current:	5A
Maximum Power:	150W; 1250 VA
Initial Closed Channe	Resistance: $<0.1 \Omega$

$\left.\left.\begin{array}{ll}\hline \text { DC Isolation } \\ \begin{array}{ll}\text { Open Channel, Channel-Channel: } \\ <\left(40^{\circ} \mathrm{C}, 50 \% \text { RH }\right)\end{array} & >10^{10} \Omega\end{array} \right\rvert\, \begin{array}{ll}\text { Channel-Chassis: } \\ <\left(40^{\circ} \mathrm{C}, 50 \% \text { RH }\right)\end{array}\right)>10^{10} \Omega$.

Agilent N2265A

- 4x4 matrix and 16-bit digital I/O in one module

- High speed switching in parallel operation

- Built-in relay cycle counters

The N2265A multifunction module combines a 4×4 two-wire matrix and 16 -bit digital I/O in one module to save floor space while reducing costs. It includes four connection accessories to simplify wiring. The 4×4 matrix (including 16 crosspoints) provides the most convenient way to connect a group of test instruments to multiple test points on DUTs. Each crosspoint in a module switches two wires for the high and low measurement. The

Specifications

N2265A includes 16 bi-directional data lines (bits) plus three handshake lines. The 16-bit I/O lines are TTL compatible input/output, or TTL compatible input and open collector output. The $16 \mathrm{I} / 0$ bits can be addressed individually, as two 8-bit ports, or one 16-bit port. A Zener diode is used in each channel for input over voltage protection (>42 V DC) and ESD protection. Each I/O line can sink up to 0.6 A to control external devices.

16-bit Digital I/0

I/O Lines
Output Characteristics:

Cha	
$V_{\text {in }}$	$\begin{aligned} & \leq+42 \mathrm{~V} \text { DC @ } \\ & \mathrm{I}_{\text {sink }} \leq 0.6 \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {out }}$ (high)	$\geq 2.4 \mathrm{~V} \text { @ }$
	$1 \leq 10 \mathrm{~mA}$ output:
$\mathrm{V}_{\text {out }}$ (low)	$\leq 0.8 \mathrm{~V}$ @ I $\leq 0.6 \mathrm{~A}$ input
Input Characteristics:	
$V_{\text {in }}$ (high)	$\geq 2.0 \mathrm{~V}$
$V_{\text {in }}$ (low)	$\leq 0.8 \mathrm{~V}$
Handshake Lines	
$V_{\text {in }}$	$\leq 5 \mathrm{~V}$ DC
$V_{\text {out }}$ (high)	$\begin{aligned} & \geq 2.4 \mathrm{~V} \text { @ } \\ & \mathrm{I} \leq 400 \mu \mathrm{~A} \text { output } \end{aligned}$
$\mathrm{V}_{\text {out }}$ (low)	$\begin{aligned} & \leq 0.5 \mathrm{~V} @ \\ & \mathrm{I} \leq 1 \mathrm{~mA} \text { input } \end{aligned}$
$V_{\text {in }}$ (high)	$\geq 2.0 \mathrm{~V}$
$V_{\text {in }}$ (low)	$\leq 0.8 \mathrm{~V}$

Module Accessories

N2295A	$\frac{\text { Screw terminal block }}{\text { Crimp \& insert terminal }}$
N2296A	block
N2297A	DIN96-to-Twin-D50 cable
N2299A	DIN96-to-Quad-D25 cable

8-channel General-purpose Relay Module

Agilent N2267A

- Switching up to 8 A, 250 V
- Built-in overheat protection for high reliability

The N2267A is designed for highcurrent (up to 8 A continuous), lowresistance switching applications, such as $A C / D C$ power supply testing. It can also be used to switch on/off AC (up to 250 V) or DC (up to 125 V) power supplies and current sources. Each channel can carry 8 A current at the same time. For thermal protection and reliability, the N2267A has built-in temperature control circuitry that uses sensor ICs and a cooling fan. An overtemperature warning signal is also
available to activate an external LED or buzzer. A crimp \& insert connector (N 2327 A) is available. A protection network area is provided on the module's PCB, for switching inductive loads such as electric motors, solenoids, contacts, chokes, electromagnets and incandescent lamps. To protect relays from overvoltage damage, the RC network or the varistors must be placed on this module, which can effectively absorb the surge voltage.

DC Isolation	
Open Channel, Channel-Channel: $<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right) \quad>10^{10} \Omega$	
Channel-Chassis: $<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right)$	$>10^{10} \Omega$
AC Isolation	
Capacitance (with 1 channel closed): Open Channel, Channel-Channel $<10 \mathrm{pF}$	
Channel-chassis	<10pF
Insertion Loss (with 50Ω termination): 100 kHz $<0.10 \mathrm{~dB}$	
1 MHz	$<0.20 \mathrm{~dB}$
Crosstalk (with 50Ω termination):	
100 kHz	$<-75 \mathrm{~dB}$
1 MHz	$<-55 d B$
Module Accessories	
N2327A	Crimp \& insert connection kit for N2267A

Note: All voltage and current are in DC or AC RMS if not specified.

Dual 1×4 RF Multiplexer ($\mathbf{3 . 5} \mathbf{~ G H z}, 50 \Omega$)

Agilent N2268A

- Ideal for wireless communication test
- Insertion loss $<1.7 \mathrm{~dB}$ at 3.5 GHz

The N2268A multiplexer module has two 1×4 independent multiplexers with SMA connectors, delivering high performance, very low insertion loss, high isolation, and excellent VSWR performance. This high-density RF multiplexer module is an economical RF signal switching solution. Its 3.5 GHz bandwidth guarantees signals will not be degraded when switched from source to destination. Each group of four channels is isolated from the other and from the chassis to prevent

Specifications

Input Characteristics	
Maximum Scan Rate: 20 Chans./ sec	
Maximum Voltage:	30V, DC+AC peak
Maximum Current:	$0.5 \mathrm{~A}, \mathrm{DC}+$ AC peak
Maximum Power: (per channel)	10W
Characteristic Impedance: 50Ω	
DC Performance	
Thermal Offset:	$\leq 3 \mu \mathrm{~V}(<2 \mu \mathrm{~V}$, typ.)
Initial Closed Channe	Resistance: $<1 \Omega$
Insulation Resistanc $<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right)$	(between terminals): $>10^{10} \Omega$
Capacitance	
Center-Center	<0.06pF
Center-Shield	<20pF
Rise Time:	<150psec
Signal Delay:	<1.5nsec

ground loops. The wide-bandwidth performance enables quality dynamicrange RF signal measurements using oscilloscopes, spectrum analyzers, network analyzers, and GSM/CDMA test sets. Typical test applications include switching signals of Bluetooth transceivers and L1/L2 GPS receivers, $1.8 / 1.9 \mathrm{GHz}$ wireless communication devices (such as GSM, CDMA, 3G, DCS1800, and PCS1900 base stations), and mobile phones. It can be also used to route satellite signals.

AC Performance	
Insertion Loss	
1 GHz	
2 GHz	$<0.9 \mathrm{~dB}$
2.5 GHz	$<1.2 \mathrm{~dB}$
3.5 GHz	$<1.4 \mathrm{~dB}$
Crosstalk (Channel-Channel,	
Channel-Common)	
1 GHz	$<-64 \mathrm{~dB}$
2 GHz	$<-64 \mathrm{~dB}$
2.5 GHz	$<-50 \mathrm{~dB}$
3.5 GHz	$<-50 \mathrm{~dB}$
VSWR	
1 GHz	<1.20
2 GHz	<1.35
2.5 GHz	<1.35
3.5 GHz	<1.35

MODULES

16-Bit Optical Isolated Digital I/0 + 2 DACs Module

Agilent N2269A

- Block data transfer rate up to 3.57 M words/sec
- DACs for analog control or as waveform generator
- Isolation voltage up to 350 V

The N2269A provides optically isolated 16-bit output/input digital I/O plus two DACs in one module. It's designed for production-line automation control environments that require ground-noise-free inputs/outputs, elimination of ground current loops, or test system reference ground isolation from line voltage. An external power supply (+5 V DC) is required when using the isolation function in a two-reference ground system. Both the 16 -bit input and output ports can be addressed as

16 1-bit ports, two 8-bit ports, or one 16-bit port. The two 16 -bit DAC ports can output calibrated DC voltage from -12 V to +12 V , or an AC voltage signal with a sample rate of up to $781.25 \mathrm{~K} \mathrm{Sa} / \mathrm{s}$. They can be used as programmable voltage sources or function generators. There is a 256 K 16 -bit on-board memory which can be used as an input/output buffer for block data transfer, or as a DAC buffer when generating a waveform.

Specifications

I/O Lines
Max. Voltage(line-chassis): $+5.25 \mathrm{~V}$
Max. sink current (per bit): 16 mA
Output Characteristics:
$\mathrm{V}_{\text {out }}$ (high) $\quad \geq 2.4 \mathrm{~V}$ @ 10 mA
$\mathrm{V}_{\text {out }}$ (low) $\leq 0.8 \mathrm{~V}$ @16mA
Input Characteristics:
$\mathrm{V}_{\text {in }}($ high $) \quad \geq 2.0 \mathrm{~V}$
$\mathrm{V}_{\text {in }}$ (low) $\quad \leq 0.8 \mathrm{~V}$
Handshake Lines
Max. Voltage(line-chassis): +5 V DC
Output Characteristics:
$V_{\text {out }}$ (high) $\quad \geq 2.4 \mathrm{~V}$ @ 400 $\mu \mathrm{A}$
$\mathrm{V}_{\text {out }}$ (low) $\leq 0.5 \mathrm{~V}$ @ 1mA input
Input Characteristics:
$V_{\text {in }}$ (high) $\quad \geq 2.0 \mathrm{~V}$
$\mathrm{V}_{\text {in }}$ (low) $\quad \leq 0.8 \mathrm{~V}$
Digital I/O Isolation Voltage $\leq 350 \mathrm{~V}$

DAC ports	
Output Range:	$\pm 12 \mathrm{~V}$, non opticalisolated
Resolution:	1 mV
Output Current:	$\leq 10 \mathrm{~mA}$
Setting Time:	$1 \mathrm{~ms} \mathrm{to} 0.01 \%$ of output
Accuracy (24 hour $\pm 1^{\circ} \mathrm{C}$):	
Temp. Coefficient:	$\begin{aligned} & \pm(0.015 \% \text { of output }+ \\ & 1 \mathrm{mV}) /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
DAC Sample Rate:	$\leq 781.25 \mathrm{~K} \mathrm{Sa} / \mathrm{S}$
Module Accessories	
N2329A	Screw terminal block
N2296A	Crimp \& insert terminal block
N2297A	DIN96-to-Twin-D50 cable
N2299A	DIN96-to-Quad-D25 cable

10-channel 1000V Multiplexer

Agilent N2270A

- Switching up to 1 A, 1000 V
- Ideal for breakdown and leakage testing

The N2270A 2-wire multiplexer can be used to source external voltage up to 1000 V from the common end to any of 10 DUTs, or to monitor voltage from different sources using a voltmeter. It can be used in a scanner application where only one channel is closed at a time, or in distribution applications where several channels are simultaneously closed. Applications include capacitor breakdown voltage testing as well as high-resistance measurements of transformers, capacitors, relays, connectors, PCBs,

Specifications

General Specifications	
Relays:	Non-latching reed relay
Thermal Offset:	<200 $\mu \mathrm{V}$
Relay Life:	10^{8} @ 1V, 10 mA
Maximum Scan Rate:	100 Chans./ sec
Input Characteristics	
Maximum Current:	1 A
Maximum Voltage:	1000 V
Maximum Power:	10W
Initial Closed Channel	Resistance: $<1 \Omega$
DC Isolation	
Open Channel, Chann $<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right)$	el-Channel: $\geq 10^{10} \Omega$
Channel-Chassis: $<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right)$	$>10^{10} \Omega$

and cables. A crimp \& insert connection kit is designed to work with N2270A. High-voltage signals can be wired to the N2320A, which can be plugged into the connector on a N2270A.

1 x 9 RF (1GHz) Multiplexer Module

Agilent N2272A

- Ease of channel density extension
- Ideal for high density RF signal routing
- Ease of wiring with BNC connectors

The N2272A RF high-density module provides a 1×9 multiplexer that can be widely used in RF test and measurement system. It consists of a series of eight RF latching relays in a tree structure. The module's low insertion loss, high isolation and excellent VSWR performance guarantee that the RF signals will not be degraded when routed from source to destination. In order to decrease the degradation when cascading, the auxiliary channel (channel 08) with smaller insertion
loss and lower VSWR, is provided. In order to extend the channel count, channel 08 can be connected to the COM channel of the next N2272A module. It can also be used as a standard channel. BNC connectors on the module's front panel are provided for ease of wiring.

The N2272A can only be operated in SCPI mode when installed in 3499A/B mainframes with firmware 3.0 or later.

Specifications

Input Characteristics	DC Performance			
Total Channels: 9	Thermal Offset: $\quad<8 \mu \mathrm{~V}$			
Maximum Voltage: 24 V	Initial Closed Channel Resistance:			
Maximum Current:: 1 A	$<0.8 \Omega$			
Maximum Power: 24W	Insulation Resistance (between terminals):$<\left(25^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right) \quad>10^{10} \Omega$			
Characteristic Impedance:				
50Ω	Capacitance: Center-Center $<0.006 \mathrm{pF}$			
Connector: $\overline{\text { BNC }}$				
Relay life	Center-Shield		$<60 \mathrm{pF}$	
Mechanical 5×10^{6}	Rise Time:		<500psec	
Electrical (24V@1A DC)	Signal Delay:		<2.5nsec	
10^{5}				
AC Performance	100 MHz	300 MHz	800 MHz	1 GHz
Insertion Loss	$<0.5 \mathrm{~dB}$	$<0.8 \mathrm{~dB}$	$<1.8 \mathrm{~dB}$	$<2.5 \mathrm{~dB}$
Crosstalk (Channel-Channel)	$<-75 \mathrm{~dB}$	$<-65 \mathrm{~dB}$	$<-55 \mathrm{~dB}$	$<-50 \mathrm{~dB}$
VSWR	<1.20	<1.30	<1.35	<1.55

Dual 1x6 Microwave (20GHz) Multiplexer

Agilent N2276A/B

- Quick set-up microwave switching to save integration time
- Modular microwave switching to fit each application
- Can also drive two external microwave attenuators

The 3-slot N2276A module (option 206) provides dual 1×6 microwave multiplexers, with excellent insertion loss, isolation and VSWR performance. With option 204, the N2276A becomes a dual 1×4 microwave multiplexers, while keeping all the other features. The modular N2276A can exactly fit your application channel density needs, minimizing the redundant channel, thus offering the most cost effective microwave switching. The SMA connectors on module's front panel are provided for high performance connections. The N2276A can also drive two external microwave attenuators (Agilent 84904/6/7/K/L).

The N2276B module is a microwave multiplexer/attenuator driver, deleting the microwave relays from the N2276A. Offering the most flexibility, it can drive

Specifications

Total Channels (N2276A)	
	Dual 1×4 (option 204)
	Dual 1×6 (option 206)
Connector	SMA
Frequency range	DC to 20 GHz
Insertion loss	$\begin{aligned} & 0.3 \mathrm{~dB}+0.015 \mathrm{~dB} * \\ & \text { frequency (GHz) } \\ & \hline \end{aligned}$
Isolation	$>100 \mathrm{~dB}$ @12 GHz; $>80 \mathrm{~dB}$ @15 GHz; $>70 \mathrm{~dB}$ @20 GHz
VSWR	$\begin{aligned} & \text { <1.2@4 GHz; } \\ & \text { <1.35@12.4 GHz; } \\ & \text { <1.45@18 GHz; } \\ & \text { <1.7@20 GHz } \\ & \hline \end{aligned}$
Repeatability (5M cycle @25C ${ }^{\circ}$)	
	$<0.03 \mathrm{~dB}$
Switching time	25 ms
Switch life	5 M cycles

any two 1×4 or 1×6 microwave relays (Agilent 87104A/B/C, Agilent 87106A/B/C). A custom microwave multiplexer module can be built with the N2276B and microwave relays, eliminating the external power supply or digital I/O that are used in previous customer-built microwave switching. Two 1.5 m ribbon cables are included for connecting to external microwave relays. It can also drive two external microwave attenuators (Agilent 84904/6/7/K/L).
The N2276A/B can be used in the testing of cellular phone, cordless phone, mobile radios, cellular base station, broadband wireless communication transceivers, RFICs, and high-speed digital circuits.
The N2276A/B can only be operated in SCPI mode when installed in 3499A/B mainframes with firmware 3.0 or later.

Module Accessories $87104 \mathrm{~A} / \mathrm{B} / \mathrm{C}$	SP4T microwave relays $(4,20,26.5 \mathrm{GHz})$
$87106 \mathrm{~A} / \mathrm{B} / \mathrm{C}$	SP6T microwave relays $(4,20,26.5 \mathrm{GHz})$
$84904 / 6 / 7 / \mathrm{K} / \mathrm{L}$	$0-11 \mathrm{~dB}, 0-90 \mathrm{~dB}, 0-70 \mathrm{~dB}$ microwave attenuators $(26.5,40 \mathrm{GHz})$

1x2, 1x4 and 1x8 Optical Multiplexer Module

Agilent N2280A, N2281A and N2282A

- Ideal for optical and electronic hybrid test system

- Modular optical switching to fit each test application

- High repeatability for

 accurate signal routingN2280A MUX Module

N2281A MUX Module

\ldots Powered State
N2282A MUX Module

The N2280A (Quad 1×2), N2281A (Dual 1×4) and N2282A (1×8) optical modules bring the flexibility of modular optical switching based on the Agilent 3499 switching family. The optical switching modules, combined with other 3499 family electronic modules, provide a total switching solution in hybrid test systems. With this modular optical switching, test engineers can set up an ATE system with just enough optical switching channels to fit the current application, and add more channels later as the application grows. The collimating lenses optical relays in the N2280A/81A/82A minimize the switching insertion loss, and improve the switching repeatability and stability. These three modules are ideal for SONET/SDH test, fiber-optical component test, and fiber-optical

Specifications

Relay Life:	$\geq 10^{7}$ (cycle) Optical
Fiber type:	9/125
Wavelength Range: N2280A/N2281A	1310/1550nm
N2282A	1270/1670nm
Insertion loss (SM): N2280A/N2281A N2282A	$\begin{aligned} & \leq 0.8 \mathrm{~dB} \\ & \leq 0.7 \mathrm{~dB} \end{aligned}$
$\begin{aligned} & \text { Return loss }{ }^{1} \text { (SM): } \\ & \text { N2280A/N2281A } \\ & \text { N2282A } \end{aligned}$	$\begin{aligned} & \geq 55 \mathrm{~dB} \\ & \leq 57 \mathrm{~dB} \end{aligned}$
Polarization depend N2280A/N2281A N2282A	$\begin{aligned} & \text { nt loss (SM): } \\ & \leq 0.07 \mathrm{~dB} \\ & \leq 0.04 \mathrm{~dB} \\ & \hline \end{aligned}$
Insertion loss stabil N2280A/N2281A	$\begin{aligned} & \mathrm{y}^{2}: \\ & \leq \pm 0.05 \mathrm{~dB} \end{aligned}$
N2282A	$\leq \pm 0.025 \mathrm{~dB}$

network monitoring. They can also be used in fiber-optical network configuration and multi-source selection/measurement. Two channels in different modules can be synchronously switched with the "CARD PAIR" command. These modules are optically passive operate independently of data rate, data format and optical signal direction; therefore, are transparent to signaling formats. The SC/APC connectors provide reliable and easy connection. A N2280A/81A/82A module occupies two slots in a 3499A/B mainframe. The N2282A can only be operated in SCPI mode when installed in 3499A/B mainframes with firmware 3.0 or later. The N2282A extends an additional 8.5 cm beyond the rear of the mainframe.

Repeatability:	
N2280A	$\leq \pm 0.005 \mathrm{~dB}$
N2281A	$\leq \pm 0.0065 \mathrm{~dB}$
N2282A(Sequential)	$\leq \pm 0.01 \mathrm{~dB}$
N2282A(Random)	$\leq \pm 0.05 \mathrm{~dB}$
Crosstalk:	
N2280A/N2281A	$\leq-60 \mathrm{~dB}$
N2282A	$\leq-90 \mathrm{~dB}$
Optical input power:	$\leq 300 \mathrm{~mW}$
Switching time:	
N2280A	$\leq 20 \mathrm{~ms}$
N2281A	$\leq 25 \mathrm{~ms}$
N2282A	$\leq 250 \mathrm{~ms}$
Connectors:	SC/APC

Note 1: Excluding connectors.

Note 2: After one-hour warm-up. Drift of any channel relative to an assigned reference channel at $\pm 3^{\circ} \mathrm{C}$ deviation of ambient temperature over a seven-day period.
1 Excluding connectors, 0.2 dB typical connector insertion loss
2 Excluding connectors.
3 Drift of any channel relative to an assigned reference channel at $\pm 3^{\circ} \mathrm{C}$ deviation of ambient temperature over a seven-day period.

Microwave Multiplexer Module

Agilent 44476A

- Switching signals from DC to 18 GHz
- Triple 1-to-2 microwave multiplexers

The 44476A includes three independent SPDT 50Ω coaxial relays with excellent electrical performance from DC to 18 GHz . For general-purpose microwave switching applications, the module can be used to switch separate signal sources for a multi-band receiver/transmitter testing application. The 3 mm SMA connector on the module edge simplifies wiring.

*NOTE: Terminal designations inside the dashed boxes refer to the $\mathrm{HP} P 772 \mathrm{~B}$ only. Module panel designators outside the dashed boxes are those silkscreenedon the
HP44776A panel. Any reference in this manual to a port refers to the module panel designators.

Microwave Relay Driver Module

Agilent 44476B

- Supporting varieties of microwave coaxial relays

- Two set mounting holes for coaxial relays

The 44476B brings multi-port 50/75 Ω coaxial switching flexibility to your test system. It has two set mounting panels, so any two Agilent 876XX coaxial switches can be mounted. The coaxial switches come in three-, four-, and five-port configurations. This flexibility allows you to use the different switches for a variety of applications, constructing transfer switches, switch matrices and more. Using the 876XX in conjunction with the 44476B allows you to extend your automated three-port switching to 26.5 GHz. Coaxial relays must be ordered separately when using with this module. The coaxial switches that can be used are listed below. Option 011 designates the switches for a coil voltage of 5 V DC.

Specifications

Input Characteristics	
Frequency Range:	DC to 18 GHz
Characteristic Impedance:	
Input Power Rating: (Also less than $\pm 7 \mathrm{~V}$	1 W average DC) 100 W peak
Repeatability (after	$\begin{aligned} & 0^{6} \text { operation): } \\ & 0.03 \mathrm{~dB} \\ & \hline \end{aligned}$
Connector:	SMA
AC Isolation / Performance	
Isolation: DC-18GHz	$>90 \mathrm{~dB}$
Insertion Loss: DC-2 GHz	$<0.25 \mathrm{~dB}$
DC-18GHz	$<0.50 \mathrm{~dB}$
VSWR (3 mm SMA): DC-2GHz	$<1.15 \mathrm{~dB}$
DC-12.4GHz	$<1.25 \mathrm{~dB}$
DC-18.0GHz	$<1.40 \mathrm{~dB}$

Agilent Technologies		
Coaxial Switch	Port	Frequency
8762A/Option 011	3	DC to 4 GHz
8762B/Option 011	3	DC to 18 GHz
8762C/Option 011	3	DC to 26.5 GHz
8762F/Option 011	3	DC to 4 GHz
8763B/Option 011	4	DC to 18 GHz
8763C/Option 011	4	DC to 26.5 GHz
8764B/Option 011	5	DC to 18 GHz
8764C/Option 011	5	DC to 26.5 GHz

Note: For details of Agilent 876XX
specifications, please refer to publication number 5968-4314.

Dual 1 x 4 RF Multiplexer (1.3 GHz, 50/75 Ω)

Agilent 44478A/B

- Switching up to 1 A, 24 W or 24 VA
- Insertion loss less than 1.9 dB at 1.3 GHz

The 44478A/B multiplexer module is an ideal choice for broadband switching of high-frequency or fast pulse signals. Dual 1-to-4 multiplexers provide bidirectional switching of signals from DC to 1.3 GHz . High channel isolation ($>55 \mathrm{~dB}$ at 1 GHz) assures quality dynamic-range measurements using spectrum, network, or distortion analyzers. Each 1-to-4 multiplexer consists of seven relays in a "tree" structure, which provides high isolation and low VSWR (voltage

Specifications

Input Characteristics	
Maximum Scan Rate	43 Chans./ sec
Maximum Voltage:	42V, DC+AC peak
Maximum Current:	1A
Maximum Power: (Per channel)	24W, 24VA or 44dBm
Characteristic Impedance:	
44478A:	50Ω
44478B:	75Ω
DC Performance	
Thermal Offset:	$<6 \mu \mathrm{~V}(<2 \mu \mathrm{~V}$, Typ. $)$
Initial Closed Channe	Resistance: $<1 \Omega$
Insulation Resistanc $<\left(25^{\circ} \mathrm{C}, 40 \% \mathrm{RH}\right)$	(between terminals): $>10^{10} \Omega$
Capacitance:	
Center-Center:	<0.006pF
Center-Shield:	<60pF
Rise Time:	≤ 300 psec
Signal Delay:	$<3 \mathrm{nsec}$

standing wave ratio). All the connectors on the module's edge are female BNC for ease of wiring. Off-channels can be terminated in resistors to maintain proper operation of DUT circuitry. Simply plug a $50 / 75 \Omega$ SMB-type resistive termination onto the on-board male SMB connectors provided for each channel.

AC Performance	
Insertion Loss	
$\leq\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right)$	
10 MHz	$<0.3 \mathrm{~dB}$
100 MHz	$<0.7 \mathrm{~dB}$
500 MHz	$<1.5 \mathrm{~dB}$
1.3 GHz	$<3.0 \mathrm{~dB}$
$\leq\left(25^{\circ} \mathrm{C}, 40 \% \mathrm{RH}\right)$	
10 MHz	$<0.2 \mathrm{~dB}$
100 MHz	$<0.5 \mathrm{~dB}$
500 MHz	$<1.1 \mathrm{~dB}$
1.3 GHz	$\leq 1.9 \mathrm{~dB}$
Crosstalk	
Channel-Channel, Channel-Common	
10 MHz	$<-90 \mathrm{~dB}$
100 MHz	$<-80 \mathrm{~dB}$
500 MHz	$<-65 \mathrm{~dB}$
1.3 GHz	$<-55 \mathrm{~dB}$
$\mathrm{Group-Group}$, Module-Module	
10 MHz	$<-90 \mathrm{~dB}$
100 MHz	$<-80 \mathrm{~dB}$
500 MHz	$<-70 \mathrm{~dB}$
1.3 GHz	$<-60 \mathrm{~dB}$
VSWR	
10 MHz	<1.20
100 MHz	<1.25
500 MHz	<1.35
1.3 GHz	<1.55

Agilent 44470A, 44470D, 44471A, 44471D, 44472A, 44473A, 44474A, 44475A, 44477A Modules

44470A 10-channel Multiplexer Module (2 A, 250 V)

44470D 20-channel Multiplexer Module (2 A, 250 V)

44471A 10-channel General-purpose Module (2 A, 250 V)
44471D 20-channel General-purpose Module (1 A, 250 V)

The 44470A, 44470D, 44471A, and 44471D are designed for low-channel count applications, with higher switching capability (current or voltage) than N2260A or N2261A modules.

44472A Dual 1x4 RF Multiplexer Module ($300 \mathrm{MHz}, 50 \Omega$)

The 44472A RF multiplexer module offers broadband switching capability for high-frequency and pulse signals. Two independent 50Ω characteristic impedance 1x4 switches are provided for signal from DC to 300 MHz . BNC connectors on the module allow for easy connection.

44473A 4×4 Matrix Module (2 A, 250 V)
44474A 16-Bit Digital I/O Module
(TTL compatible)

44475A Breadboard Module

The 44475A breadboard provides a means to customize, with two areas ($104 \mathrm{~mm} \times 74 \mathrm{~mm}$ and $79 \mathrm{~mm} \times 74 \mathrm{~mm}$) for customer-designed circuitry.

44477A 7-channel Form-C Relay Module (2 A, 250 V)
The 44477A is a 7-channel Form-C relay module for general-purpose switching and control of external devices.

All of the above modules, designed for 3488A mainframes, work in the 3499A/B/C.

Rack Mounting Kits

3499A

Agilent 3499A Rack Mount Kit with Handles (Opt. 1CP)

Agilent 3499A Rack Mount Kit (Opt. 1CM)

3499B

To rackmount an Agilent 3499B with a fill panel, order Option 1CM.

3499C

To rackmount the 3499C without handles, order the Agilent standard cabinet accessory 5063-9216.

To rackmount the 3499C with handles, order the Agilent standard cabinet accessory 5063-9223.

Ordering Information

Agilent Technologies Products Mainframes

3499A 5-Slot Switch/Control Mainframe, includes hard copy manual and power cord. Plug-in modules are ordered separately and are required for operation.
3499A-0BO Delete Hard Copy User's Manual
3499A-1CP Rack Mount Kit with Handles
3499A-1CM Rack Mount Kit
3499A-0B1 Add additional User's Manual
3499B 2-Slot Switch/Control Mainframe, includes hard copy manual and power cord. Plug-in modules are ordered separately and are required for operation.
3499B-0BO Delete Hard Copy User's Manual
3499B-1CM Rack Mount Kit with half-rack filler panel
3499B-0B1 Add additional User's Manual
3499C 9/14-Slot Switch/Control Mainframe. User's manual is not included. Must order 3499C-0B1 for hardcopy of the User's Manual. Plug-in modules are ordered separately and are required for operation.
3499C-0B1 Hardcopy of User's Manual
For rackmount kit w/o handles, order the Agilent standard cabinet accessory 5063-9216
For rackmount kit with handles, order the Agilent standard cabinet accessory 5063-9223.

Mainframe Filler Panels

3499C-FP1 1 -slot width filler panel for 3499A/B/C mainframes
3499C-FP2 2-slot width filler panel for 3499A/B/C mainframes

Plug-in modules, screw terminal blocks
NOT included
N2260A 40-channel Multiplexer Module
N2261A 40-channel General Purpose Relay Module
N2262A 4×8 Matrix Module
N2263A 32-bit Digital I/O Module
N2264A $12+3$ GP +16 -bit Digital I/O Module
N2265A 4×4 Matrix + 16-bit Digital I/O Module
N2266A 40-channel High-speed Multiplexer Module
N2267A 8-channel 8 A General Purpose Relay Module
N2268A Dual 1×4 RF (3.5 GHz) Multiplexer Module
N2269A 32-bit Optical Isolated DIO +2 DACs Module
N2270A 10-channel 1000 V Multiplexer Module
N2272A 1×9 RF (1GHz) Multiplexer Module
N2276A Dual 1×6 Microwave Multiplexer
Module
N2276A-204 Dual 1×4 Multiplexer
N2276A-206 Dual 1×6 Multiplexer
N2276B Microwave Multiplexer Driver Module
N2280A Ouad Optical 1×2 Multiplexer Module, SC/APC
N2281A Dual Optical 1×4 Multiplexer Module, SC/APC
N2282A 1×8 Optical Multiplexer Module, SC/APC
N2289A Mini-DIN-to-D9 cable for built-in DIO in 3499A/B

N2290A Screw terminal block for N2260A and N2266A
N2291A Screw terminal block for N2261A
N2292A Screw terminal block for N2262A
N2293A Screw terminal block for N2263A
N2294A Screw terminal block for N2264A
N2295A Screw terminal block for N2265A
N2296A Crimp \& Insert terminal block for N2260-5A
N2297A DIN96-to-Twin-D50 cable for N2260-5A
N2298A DIN96-to-D25 cable for N2262A
N2299A DIN96-to-Ouad-D25 cable for N2260-5A
N2320A Crimp \& Insert Connection kit for N2270A
N2327A Crimp \& Insert Connection kit for N2267A
N2329A Screw Connection Kit for N2269A

Plug-in modules (Agilent 3488A family), screw terminal blocks included
44470A 10-channel Relay Multiplexer Module
44470D 20-channel Relay Multiplexer Module
44471A 10-channel GP Relay Module
44471D 20-channel GP Relay Module
44472A Dual 1×4 RF (300MHz) Multiplexer
Module (50 Ω)
44473A 4×4 Matrix Switch Module
44474A 16-bit Digital I/0 Module
44475A Breadboard Module
44476A Microwave Multiplexer Module
44476B Microwave Switch Driver Module
44477A 7-channel Form-C Relay Module
44478A Dual 1x4 RF (1.3 GHz) Multiplexer (50Ω)
44478B Dual 1x4 RF (1.3 GHz) Multiplexer (75Ω)
44480A Connector Kit for 44470A
44480B Connector Kit for 44470D

www.agilent.com

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test \& measurement needs Online assistance: www.agilent.com/find/assist

Phone or Fax
United States:
(tel) 18004524844
Canada:
(tel) 18778944414
(fax) (905) 2826495
China:
(tel) 8008100189
(fax) 8008202816

Europe:

(tel) (31 20) 5472323
(fax) (31 20) 5472390

Japan:

(tel) (81) 426567832
(fax) (81) 426567840

Korea:

(tel) (82 2) 20045004
(fax) (82 2) 20045115
Latin America:
(tel) (305) 2697500
(fax) (305) 2697599
Taiwan:
(tel) 0800047866
(fax) 0800286331
Other Asia Pacific Countries:
(tel) (65) 63758100
(fax) (65) 68360252
(e-mail) tm_asia@agilent.com

Data subject to change
© Agilent Technologies, Inc. 2002
Printed in the USA April 19, 2002 5988-6103EN

